Lesson 3: How to Determine Caloric Intake and Track Progress

Table of Contents


From Lessons 1 & 2 we acquired an understanding of our TDEE (total daily energy expenditure), how to calculate it, and also how to track calories if desired. In this lesson we will go over how to estimate what our caloric intake should be and how to adjust based on the progress we are making. To do this we first need to discuss how to set a target weight and how quickly one should attempt to gain or lose weight.

How to set a target weight

In many respects this is largely subjective; if you want to gain weight then go ahead and gain weight, and if you want to lose weight then go ahead and lose weight. You can always set a specific goal (ie, 200 pounds), get there, and then reassess to determine how to move forward. But what does the literature tell us about an ideal weight for optimal health?

Note: These sections regarding a target body weight and rates of weight gain/loss apply to adults only, not children. There are many additional considerations in childhood as children are actively growing and go through puberty at different rates & times. Going back to Lesson 1, for children:

TDEE = RMR + TEF + NEAT + EAT + growth

It’s even debatable if the standard definitions of overweight and obesity used in pediatrics are physiologically appropriate as increased metabolic risk can be seen at lower thresholds than currently used.(Kelly, 2020) While the same concepts in adults will apply to children, it is preferable to ask your child’s medical provider for guidance regarding a target body weight and how quickly to attempt to get there. Alternatively, if children adopt healthier eating and exercise habits good progress will likely be made even without setting any specific goals.

Body mass index (“BMI”)

Many people are familiar with the concept of BMI. You take your weight in kilograms and divide by your height in meters squared (kg/m2). Click here for a calculator. This generates a number, and in adults this is classified as:

  • BMI < 18.5 = underweight category*
  • 18.5 ≤ BMI < 25 = healthy weight category
  • 25 ≤ BMI < 30 = overweight category
  • 30 ≤ BMI = obesity category
*See the note directly below for a caveat to this.

Note: It seems that there is a subset of people with “constitutional thinness”, where they actually have a healthy body fat percentage, low lean body mass (“LBM”), and significant difficulty gaining weight without obvious adverse health consequences (other than poorer bone health).(Bailly, 2020; Bailly, 2021) This is in contrast to people with anorexia nervosa who typically have a considerably lower body fat percentage. As discussed below it is likely beneficial to increase one’s LBM long term; perhaps a key strategy in this situation would be to engage in resistance training and appropriate eating to build skeletal muscle mass. At this time I am unaware of any longitudinal studies indicating if this is a viable strategy.

The research on constitutional thinness is still in its infancy, with no technical diagnostic criteria(Bailly, 2020), and with almost no literature in males, but it is a topic ripe for study as this subset of the population with weight gain resistance may hold clues to treating the obesity epidemic.

Note: Where do these BMI thresholds come from? They are actually somewhat arbitrary(Kuczmarski, 2000; Komaroff, 2016):

  • They initially came from the Metropolitan Life Insurance Company tables back in the 1940s & 1950s.
  • In 1985 arbitrary cutoffs for an overweight BMI were set at 27.8 for men & 27.3 for women as these represented the 85th percentile of the BMI distribution for people aged 20-29 in the National Health and Nutrition Examination Survey (NHANES) II. Coincidentally these values correlated with the values representing minimal mortality outcomes.
  • When the 2nd edition of the Dietary Guidelines for Americans (DGA) was published (also in 1985) they listed the highest desirable BMI for men at 25-26 and women at 24-25 without proposing a specific rationale.
  • In the 3rd edition of the DGA (published in 1990) they adopted the BMI values of 25 for adults age 19-34 & 27 if >34 from the 1989 National Academy of Sciences report “Diet & Health: Implications for Reducing Chronic Disease Risk.” The reason for a higher BMI at an older age is due to observations that lower mortality was seen with increased body weight (BW) as age increases.
  • in 1995 the World Health Organization used a newer meta-analysis indicating increased mortality at BMI <18.5 & >30 and set a healthy range of 18.5-25. They acknowledged this was an arbitrary decision.
  • The 4th edition of the Dietary Guidelines for Americans (published in 1995) went with this and defined a healthy BMI as 18.5-25, pre-obesity at a BMI of 25-29.9, class I obesity as BMI 30-34.9, class II obesity as BMI 35-39.9, and class III obesity as BMI ≥40.
  • In 1998 the NIH defined overweight as BMI of 25-29.9 and obesity as BMI ≥ 30.
  • In 2000 the CDC used 5 nationally representative surveys (National Health Examination Surveys II & III in the 1960s, NHANES I & II in the 1970s, and NHANES III from 1988-1994) to make BMI growth curves for children in the US.
  • In 2000 The International Obesity Task Force similarly created childhood curves using data from 6 countries and decided to adjust the curves such that they passed through the cutoffs of 25 & 30 for overweight and obesity in adults. The most recent editions of the Dietary Guidelines for Americans moved forward with this and define childhood overweight as a BMI ≥ the 85th percentile and childhood obesity as a BMI ≥ the 95th percentile.

So, based solely on BMI you can determine what your weight needs to be to get to the healthy range. However, this brings up the question if BMI is the most accurate method to determine a healthy body weight (“BW”). As BMI does not describe the ratio of LBM to body fat (“BF”), and because it does not describe the proportion and location of different types of BF known to confer different health risks(Honecker, 2021) (ie, visceral adipose tissue, abdominal subcutaneous tissue, lower body subcutaneous tissue, etc), BMI as a metric leaves much to be desired.(Bosy-Westphal, 2021)

For example, a popular theory is that our subcutaneous adipose tissue expands with weight gain and acts as a buffer against negative metabolic effects; eventually though the excess adiposity spills over and begins to affect many other organs. This is summarized in the figure below(Ross, 2020): When this spillover occurs likely varies between individuals; the same amount of BF distributed in distinct ways between individuals can have significantly different health implications.

Reproduced from: Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin BA, Zambon A, Barter P, Fruchart JC, Eckel RH, Matsuzawa Y, Després JP. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020 Mar;16(3):177-189. doi: 10.1038/s41574-019-0310-7. Epub 2020 Feb 4. PMID: 32020062; PMCID: PMC7027970.

Can we be healthy at an elevated BMI?

A small percentage of people have relatively increased muscle mass, and this can elevate their BMI category. To my knowledge there is no evidence that increased muscle mass obtained through healthy means is harmful in any way.

However, a much greater percentage of people have increased levels of BF, leading to a higher BMI category. This brings up the concept of “metabolically healthy overweight/obesity” (MHO). There is a subset of people with BMIs above the healthy range who do not have any metabolic abnormalities (ie, normal cholesterol, normal blood pressure, etc). However, even these individuals have a higher risk of poor health outcomes than metabolically healthy normal BMI individuals.(Magkos, 2019; Opio, 2020; Tsatsoulis, 2020) Of note, all of these reviews cite data showing that when cardiorespiratory fitness is preserved the “harmful” effects of MHO diminish greatly or even completely disappear. More research is needed but it is possible that with enough physical activity many of the harmful effects seen with MHO can be mitigated, though this is less likely with BMI > 40, and it is important to note that many individuals with MHO progress to metabolically unhealthy obesity. It is difficult to state what percentage of people progress to metabolically unhealthy obesity as there are many different definitions of MHO in the literature and the percentage will change over time.

Thus, it seems possible to at least temporarily be healthy at a higher BMI, assuming higher levels of cardiovascular fitness, but it’s not yet clear for how long this will persist and what the higher BMI threshold is for this to hold true.

The Obesity Paradox

In adults aged ≥65, an “obesity paradox” has been observed where individuals with BMI in the overweight or even the obesity category live longer than those with BMI in the healthy weight category. There have been many studies showing this, with various explanations proposed.(Javed, 2020) One possible explanation is a person losing weight with illness before death and then being classified in a lower BMI category than they had been in for most of their adult life. Another is that as we age our height decreases so our BMI is artificially elevated. A third is that extra BF is actually helpful in older age. A fourth, as shown in a recent cohort, is that individuals with overweight and obesity may be diagnosed with cardiovascular disease earlier in life, and it’s possible this leads to healthy lifestyle changes and treatment earlier that helps extend the lifespan for a greater duration.(Fekri,2020) However, several recent analyses point to a separate cause; elderly individuals with higher BMI also have more skeletal muscle, and this is what may be contributing to improved health.

In one cohort followed for >30 years increased longevity and quality of life correlated with increased skeletal muscle & decreased body fat percentage (“BF%”).(Jyväkorpi, 2020) In an analysis of NHANES data, separating BF% from appendicular skeletal muscle index (ASMI, total lean mass of the 4 extremities summed & divided by height squared) showed that in the elderly higher skeletal muscle mass was the principal reason for increased survival in individuals with BMI in the overweight and obesity category relative to the normal weight category.(Abramowitz, 2018) When normalizing for the ASMI there was actually similar survival in the normal & overweight BMI categories with a non-statistically significant advantage for normal weight.

A 2021 pooled analysis of 7 prospective cohorts yielded similar findings; in fact when looking at individuals ≥ 65 years old(Sedlmeier, 2021):

  • there was a linearly positive increased risk of mortality with increasing fat mass
  • there was a linearly inverse risk of mortality with increasing fat-free mass

Thus it seems likely that higher skeletal muscle is driving the better health outcomes at higher BW as opposed to higher BF. The protective effect of higher LBM also seems to extend to children when looking at various health markers.(Xiao, 2021)

Does a healthy BMI guarantee healthy body composition?

As BMI itself does not describe the ratio of LBM to BF, we need to consider if it’s possible to have high BF levels while also having a healthy range BMI. It turns out this is indeed possible. In the fitness world this is commonly referred to as “skinny fat”. In the literature this has been termed several things, including “overfat”, and it’s estimated that >20% of individuals with a normal BMI have an elevated BF%, both in adult populations and pediatric populations.(Maffetone, 2020; Javed, 2015). This means that just because someone has a BMI classified as healthy does not mean their BF% is healthy. While this is in part due to having too much BF, it can also be attributed in part due to a lack of LBM.

TIP: For individuals with a healthy BMI but elevated BF%, there are two primary options:

  • You can diet to lose the excess BF; this is likely more warranted if your waist-to-height ratio is elevated (see below).
  • You can attempt to maintain your current BW while undergoing a resistance training program and adopting healthier eating patterns. This will allow you to build skeletal muscle and lose BF at the same time (frequently termed “body recomposition” in the fitness world).

If your primary goal is to improve health then I generally do not recommend gaining weight if you already have significantly elevated BF levels.

How to determine if your body fat percentage (BF%) is elevated

Upper limits of healthy BF% are typically considered 25% for men and 32% for women(Jayawardena, 2020), though there is no true standard definition. This is in part due to the fact that different people carry BF in different places with different health implications.(Haczeyni, 2018; Luong, 2019)

There are several ways to estimate your BF%; unfortunately the practical methods all have flaws as detailed in this series of articles:

  • Of the various anthropometric options (these are the ones that don’t require special equipment or cost money), a recent study in adults indicates the best may be the Department of Defense formula.(Tinsley, 2020) It should be noted that just because this was considered the best does not mean it is very accurate; it had an individual margin of error >5% (at times it was up to 10% off) and thus cannot be relied upon to provide accurate information. There are several other anthropometric measures that have been evaluated and show promise, but the overall body of literature at this time is too small for me to recommend any one of them over the rest.(Jayawardena, 2020)
  • Another common and popular option is bioelectrical impedance analysis (BIA); scales can be purchased at a relatively low cost and then this can be used to track weight and estimate BF%. These should not be used by people with electronic implants and it’s not clear that it is safe to use while pregnant. Unfortunately these also tend to not be super accurate and the single-frequency type (the type one would purchase cheaply) has margins of error of ~5%.
  • Cheap body fat calipers can also be purchased but can lead to widely inaccurate results with inexperienced users; that said if you can use them consistently and simply compare the actual skinfold measurements directly you can track progress with them without even having to calculate BF%. The idea here is that the calipers will pinch the skin and subcutaneous fat; as you lose subcutaneous fat the measurement will decrease.
  • While the above studies cater to adults, a recent review shows similar accuracy problems in children.(Orsso, 2020)
  • More accurate options, such as a DEXA scan, cost more money and may still be off multiple percentage points.

Thus, there is no good, practical method to easily estimate your BF%. However, as described below, as different people carry BF in different places one’s actual BF% is less meaningful for health prognostic purposes than the distribution of one’s BF. Thus, there is no need to stress about attempting to accurately quantify your BF%.

Body fat distribution

Two people can have the same BF% but carry the BF in different places. It turns out that this can confer significantly different health risks(Gowri, 2021), as indicated in the tables below (reproduced from a systematic review and dose-response meta-analysis of 72 prospective cohort studies)(Jayedi, 2020). The top table indicates risk of mortality for different standard measurements, while the bottom table indicates risk of mortality for a shift of 1 standard deviation of each measure. Thus, the bottom table gives a better indication of the comparative value of each measure.

a table indicating mortality risk associated with changes in various anthropometric measurements

a table showing the change in mortality with different anthropometric measurement changes
Reproduced from: Jayedi A, Soltani S, Zargar MS, Khan TA, Shab-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020 Sep 23;370:m3324. doi: 10.1136/bmj.m3324. PMID: 32967840; PMCID: PMC7509947.

In general a larger waist circumference is found to be harmful while larger hip and thigh circumferences are found to be beneficial. Additionally, waist-to-height ratio (with increasing risk when this ratio is >0.5) seems to have more prognostic value than waist circumference alone. Only waist-to-thigh ratio seems to have more prognostic value than waist-to-height ratio, but as the former measurement was only considered in two studies it’s unclear if this is a robust finding (notice the large confidence interval of [1.01-1.62] for the waist-to-thigh ratio).

The prior analysis also shows that adjusting one’s waist circumference for their BMI provides even more useful prognostic information. In a recent consensus statement by the International Atherosclerosis Society (IAS) & International Chair on Cardiometabolic Risk (ICCR) Working Group on Visceral Obesity, the authors advocate doing this.(Ross, 2020) They provide the following table:

This table indicates waist circumference thresholds for increased health risk stratified by BMI for white adults. This clearly does not encompass all ethnic groups and much more research is needed to be able to stratify waist circumference by BMI in people of various ethnic backgrounds.

So how can one measure their waist circumference? You can take your waist measurement as described on pages 52-53 here or as shown in the videos here. You can then compare it to the table to the left, knowing there are limitations regarding the data that has comprised this table, or you can simply calculate your waist-to-height ratio. If your waist circumference is greater than half of your height then that implies you are carrying excess abdominal BF. While not perfect, if this is the case it suggests losing weight may be beneficial since this is associated with negative health conditions.(Ashwell, 2020)

For completeness, the World Health Organization recommends a different measurement site for waist circumference, but the above method is more logical to me as there is less subjectivity.


It should be clear from a health perspective there is no one perfect BW for any given person, rather there is a range across which similar health outcomes can be seen. Thus, I do not actually advise targeting a specific body weight. In general I advise individuals with excess BF, principally determined by their waist circumference, to lose the BF while also following a resistance training program to help maintain (or even build) their overall muscle mass. Most people in the obesity category by BMI, and many people in the overweight category and with a waist-to-height ratio >0.5, will have excess BF. Beyond that it is really up to personal preference.

Note: An alternative mindset is to not set a target weight or even aim to decrease your waist-to-height ratio below 0.5. Instead, simply adopt healthier habits and see where this takes you while aiming to lose 10-15% of your current weight. A recent study found very significant health benefits in a cohort of individuals who lost a median of 13% of their body weight.(Haase, 2021) This would equate to losing 39 pounds for someone who weighs 300 pounds. I have reproduced a figure from this publication here:

Reproduced from: Haase, C.L., Lopes, S., Olsen, A.H. et al. Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: evidence from a UK primary care database. Int J Obes 45, 1249–1258 (2021). https://doi.org/10.1038/s41366-021-00788-4

In this figure for each of the 3 profiles the grey dot represents someone who stayed at the lower BMI level, the red dot represents someone who stayed at the upper BMI level, and the blue dot represents someone who transitioned from the upper to the lower BMI level over a 3-4 year time period. Follow-up after this time point occurred for a median of 6.3 years. For many of these health conditions much of the excess risk disappeared with weight loss, and at times the risk was actually lower than for someone who had stayed at the lower BMI (possibly due to the other lifestyle factors associated with the weight loss).* The main point is that weight loss across the entire spectrum is helpful.

*To be clear, there is still excess risk relative to a BMI lower than the lower threshold in each of the above profiles. For example, looking at sleep apnea above each profile has significant increased risk with the higher vs lower BMI threshold. Thus, in profile 3 for individuals with a BMI starting at 45.0 who lose weight until their BMI is 39.2 their risk of sleep apnea will be similar to someone who has always had a BMI of 39.2, but based on profile 2 it will still be higher than someone with a BMI of 34.8.

Thus, simply developing healthier habits and seeing how much weight loss this provides can go a long way towards better health, even if your BF% remains elevated or your waist-to-height ratio remains >0.5. Eventually when weight loss plateaus you can consider adopting new strategies to further improve your health, but you can be confident that even a relatively small amount of weight loss can go a long way.

Rate of weight gain or loss

If an individual wants to gain or lose weight, it is helpful to know how quickly this can be safely and effectively done, as well as the risks of changing BW too rapidly.

Note: Some basic terminology:

  • maintenance: consuming a number of calories equal to your TDEE, thus generally maintaining your current bodyweight
  • surplus: consuming more calories than your TDEE, leading to weight gain over time
  • deficit: consuming fewer calories than your TDEE, leading to weight loss over time

For people who want to gain weight

Note: This advice does not apply to people who are medically underweight (body mass index < 18.5 and not constitutionally thin) . If medically underweight I recommend discussing goals of weight gain with your medical provider; in general the desired rate of weight gain will be faster than what I discuss below.

The general goal is to gain LBM while minimizing BF gain. The rate at which we can gain new skeletal muscle and LBM is limited; if we gain beyond this rate the excess weight will accumulate as BF.

There are various recommendations for rate of weight gain. In many respects it depends on your current level of musculature; people with less muscle tend to be able to gain muscle more quickly as they are further from their genetic potential. One generic recommendation(Iraki, 2019) (written for bodybuilders in the off-season but applicable to anyone trying to build muscle) is to limit weight gain to:

  • no more than 0.25-0.50% of one’s body weight weekly if a beginner to resistance training
  • no more than 0.25% of one’s body weight weekly if more advanced

Another recommendation is to limit the caloric surplus to(Aragon, 2020):

  • at most 20-40% of one’s total daily energy expenditure, or 500-1,000 calories daily for beginners to resistance training, particularly if they typically have difficulty gaining weight (presumably due to a significant increase in non-exercise activity thermogenesis)
  • at most 10-20% of one’s total daily energy expenditure, or 250-500 calories daily for non-beginners
    • while not stated in their recommendations, this would likely also apply to people who put on excess body fat easily

Tip: My recommendation is to eat as few calories as necessary to get stronger with resistance training over time, as strength gains correlate with skeletal muscle hypertrophy.(Taber, 2019) Only a small surplus of a few hundred calories daily(Slater, 2019) is likely needed to maximize skeletal muscle hypertrophy. Thus, if one focuses on gaining strength without gaining too much BF skeletal muscle hypertrophy will occur. When strength gains stop then one can generally either change their resistance training program or increase calories by 100-200 kcal/day.

Anecdotally, many people will “bulk” (gain weight) quickly and think they are gaining a lot of muscle. Then when they eventually “cut” (lose weight), they look similar to how they did prior to bulking. This is because a lot of the weight they gained that they thought was muscle was actually water/glycogen/BF. Beyond the beginner stage (which can last several months to 1-2 years when training consistently) it takes time to build appreciable muscle; you are unlikely to see changes on a weekly basis (or even a monthly basis if you are more advanced).

So how do we tie this in to calculating one’s TDEE and tracking calories? You can calculate your TDEE, aim to eat this daily (knowing there is some margin of error), and increase your target by 100-200 kcal/day if progress with resistance training stalls. Alternatively, you can follow a good resistance training program while eating sufficient protein (discussed in Lesson 4) without tracking calories. If you stop making progress with the resistance training you can consider if you are not eating enough calories and increase food intake accordingly. If you are gaining weight too quickly (beyond the guideline above, or if you can tell your BF% is increasing) you can take certain things out of your diet or temporarily track calories to get back on course.

For people who want to lose weight

The general goal is to lose BF while maintaining (or even gaining) LBM.

If people lose weight too rapidly they put themselves at risk of medical complications (ie, developing gallstones). Additionally, faster weight loss increases the risk of losing LBM, which likely makes it harder to keep the weight off long term.(Dulloo, 2018) It is harder to maintain a faster rate of weight loss as the body undergoes compensatory mechanisms to fight this. These include decreases in leptin/thyroid/insulin/satiety hormones, increases in cortisol/ghrelin hormones, and alterations in sympathetic nervous system activity. Collectively this increases adaptive thermogenesis & hunger, making dieting more difficult.(MacLean, 2017; Müller, 2013)

Note: Technically not all of adipose tissue is actually fat. When we lose fat we lose some of the non-fat mass associated with the adipose tissue. It’s unclear how variable this is between individuals but it’s estimated that ~15% of adipose tissue is actually not fat.(Abe, 2019) While this fact may be of interest for individuals who are losing large amounts of weight and attempting to track changes in LBM via sophisticated means (ie, a DEXA scan), practically speaking this is not an important thing to consider.

So how quickly should one lose weight? A 2019 review indicated no significant differences with weight loss rates up to almost 1% body weight weekly in dietary interventions without exercise components.(Turicchi, 2019) A 2020 systematic review and meta-analysis evaluating the impact of different rates of weight loss via dietary interventions (there is no mention of exercise interventions being employed) found more gradual weight loss led to slight improvements in body fat loss and body fat percentage loss (-1 kg and 0.83%, respectively).(Ashtary-Larky, 2020) Of note, the rate of weight loss was variable in these studies (0.2-1 kg/week in the slower weight loss group, 0.5-1.8 kg/week in the faster weight loss group).

The literature is sparse regarding interventions in large groups of people with effective exercise and dietary components testing the impact of variable rates of weight loss on outcomes. As following a proper resistance training program will further aid in maintaining or gaining LBM while losing BF, I feel aiming for up to 1% body weight loss weekly is a safe metric to shoot for.

Example: Let’s see how we can attempt to lose weight keeping in mind all of the above. A 200 pound person with a TDEE of 2,500 kcal/day wants to lose 1% BW weekly. 1% of 200 is 2 pounds, requiring a 7,000 kcal weekly deficit, or 1,000 kcal/day. Thus, they aim to eat 1,500 kcal/day. Knowing their BMR, TEF, and NEAT will decrease, they estimate this to sum to 300 kcal/day. Therefore they start exercising enough to burn an estimated 300 kcal/day to make up for this difference. This maintains their TDEE at 2,500 kcal/day with a 1,000 kcal/day deficit. Part of their exercise is resistance training to attempt to maintain their LBM and have the weight loss come from BF.

Over the first few days they lose 4 pounds of water/salt/glycogen (see tip below). Over the next 4 weeks they lose 7-8 pounds, meeting the 1% body weight loss per week goal. Now that their new body weight is less (~188 pounds), there is more adaptive thermogenesis, so their TDEE decreases further. As this continues to occur at some point they will no longer be losing 1% of their body weight weekly. They can proceed with a slower rate of weight loss or choose a combination of eating fewer calories and increasing exercise to maintain the needed deficit for 1% loss per week. As a minimum amount of nutrition (via macronutrients and food groups, all discussed later in this course) is needed for good health at some point calories cannot safely be reduced further and any increase in the deficit should come from increased exercise.

However, keep in mind that as described in Lesson 1 our TDEE can only increase so much from increased physical activity (unless we really crank up physical activity to unrealistically high levels for most people). Thus, there will come a point where there is not a safe and effective way to continue losing weight at the same rate. In some ways this can be a good thing; I’d rather have someone follow sustainable, positive lifestyle practices and make progress more gradually then perform a crash diet or other unhealthy methods to lose weight too quickly.

Ok, so the desired rate of weight loss seems straightforward, but what if we have a lot of water weight fluctuations so it’s hard to know how quickly we are losing weight? What if we don’t want to track calories and thus cannot easily adjust the total amount we are consuming? First lets go over how to track weight changes and monitor progress, and then we will go over a strategy to do this without tracking calories.

How to track progress

  • Use a scale. I recommend weighing yourself every morning after using the bathroom and calculating a 7 day rolling average. So weigh yourself Monday – Sunday and calculate the average. Then next Monday replace the prior Monday’s weight with your new weight and calculate the new average. Track how this changes over time. I recommend this strategy because water weight can fluctuate daily depending on physical activity and what you eat; using a 7 day rolling average helps to smooth out these differences. Of note, as women go through their menstrual cycle water weight can fluctuate a lot. Thus, depending on how big of an issue this is, women may need to compare 7 day averages from cycle to cycle (ie, the 7 day average on the 3rd day of this cycle compared to the 7 day average of the 3rd day of the last cycle) to confidently track progress. Libra (android) and Happy Scale (iPhone) are apps that can be used for this. An example done in Excel is shown below.

7 Day Rolling Average Example

image of an excel spreadsheet showing a 7 day rolling average
Image of an Excel spreadsheet showing a 7 day rolling average. Blue dots are daily measurements and red dots are the 7 day rolling average. The first 6 values in column B are placeholders that I made invisible on the graph. The other values in column B are the sum of the 7 prior measurements (including that same day) in column C divided by 7. In this example several pounds of water weight were lost quickly, then weight stagnated prior to continuing to drop further. Stagnation can occur due to food choices (excess calories or salt) or due to water weight fluctuations (ie, due to the menstrual cycle). Notice that while the rolling average decreases steadily after the stagnation period the individual weight measurements do not; this is common and it is imperative to not overreact to a single weight measurement.
  • Body part measurements. A change in weight on the scale won’t tell you if you are gaining or losing LBM or BF. Measurements help you do this. I recommend measuring once a week (ie, every Sunday), in the morning after using the bathroom. For males measuring the waist is useful. For females measuring the waist and additionally at the widest portion of the hips is useful. You can measure additional spots (ie, neck, arms, thighs) if desired. In general, BF decreases or increases when waist/hip measurements decrease or increase, respectively. This is very helpful to help determine if the weight being gained or lost is due to LBM vs BF. Additionally, for women with water retention issues due to the menstrual cycle, if the scale is moving in the wrong direction but your measurements are going in the right direction, you can be confident you are doing well even if the scale is not showing it acutely.

TIP: Of note, it is crucial you perform measurements the same way each time. A protocol for measuring your waist circumference was linked to above. It doesn’t matter too much how you do it (or any other measurement) as long as you are consistent over time. Consistency is key. Pick whatever method you think will be easiest to stick to and stay consistent.

Additionally, for those attempting to gain muscle measuring arm and thigh circumferences can be helpful. Beware though that if you lose fat and gain muscle at the same time the measurements will capture both of these processes so they should not be relied upon in isolation. A combination of metrics to track progress is most insightful.

  • Pictures. I recommend taking pictures when you start dieting (to gain or lose weight) and periodically take new ones with the same poses and lighting. This can help motivate you and provide another method to track progress. I would take pictures no more frequently than every 2 weeks. Every 4 weeks is probably better for being able to see real changes, especially when it comes to muscle gain.
  • Exercise numbers. In general, maintaining strength while losing weight indicates LBM is being maintained. If you gain weight without gaining strength, that’s a sign you are probably gaining excess BF. If you are losing weight and start to lose strength this would be a good time to reevaluate if you need to slow down the rate of weight loss (by increasing calories), increase protein intake (discussed in Lesson 4), or alter your resistance training program (discussed in the general exercise course).

TIP: The first week of dieting can yield water weight changes of several pounds. This is because when you decrease calories and increase exercise you use up glycogen (a molecule the body uses to store glucose), and 1 gram of glycogen is stored in the body with at least 3 grams of water.(Murray, 2018) Changes in sodium intake also impact water retention especially in the first few days of dietary changes. Therefore, weight fluctuations the first week do not indicate actual changes in BF.

After the first week I recommend tracking your weight daily for 2 weeks and taking measurements each week. If after these 2 weeks (not including the first week) you are gaining or losing weight at the appropriate pace and the measurements are good, keep doing what you are doing. If your weight is not changing at the desired rate, adjust accordingly. As examples, if you want to lose 1.5 pounds per week and are only losing 0.5 pounds per week, then decrease your calories by 500 kcal/day (or increase activity accordingly). If you want to lose 1.5 pounds per week but lost 2 pounds the last week, increase your calories by 250 per day. Then adjust further after another 2 weeks of measurements.

For those who do not wish to track calories, you can still track your overall progress as described above and adjust accordingly. If you’re not losing weight quickly enough, try to eat smaller portions of the same foods, cut out a food item that has a significant number of calories, do more physical activity, or adjust in some other way that makes sense to you. Then get right back to tracking your progress and make further adjustments as necessary. If these strategies do not work you can always temporarily track calories to troubleshoot the issue.


After these first three lessons you should now have a basic understanding of the interplay between TDEE & caloric intake, how to estimate TDEE, how to use this estimate to start the dieting process, how to set a healthy goal BW, and how to track progress and adjust caloric intake over time as indicated. As long as you are objectively and consistently tracking progress, you can attempt almost any dieting or lifestyle strategy that suits you and adjust as needed. 

With this general understanding of calories, it is time to start discussing where these calories come from. In the following 3 lessons we will go over the 3 basic macronutrients: protein, carbohydrate, and fat.

Click here to proceed to Lesson 4


  1. Abe T, Dankel SJ, Loenneke JP. Body Fat Loss Automatically Reduces Lean Mass by Changing the Fat-Free Component of Adipose Tissue. Obesity (Silver Spring). 2019 Mar;27(3):357-358. doi: 10.1002/oby.22393. Epub 2019 Jan 31. PMID: 30706656.
  2. Abramowitz MK, Hall CB, Amodu A, Sharma D, Androga L, Hawkins M. Muscle mass, BMI, and mortality among adults in the United States: A
    population-based cohort study. PLoS One. 2018 Apr 11;13(4):e0194697. doi: 10.1371/journal.pone.0194697. Erratum in: PLoS One. 2018 May 24;13(5):e0198318. PMID: 29641540; PMCID: PMC5894968.
  3. Aragon A, Schoenfeld B. Magnitude and Composition of the Energy Surplus for Maximizing Muscle Hypertrophy: Implications for Bodybuilding and Physique Athletes. Strength and Conditioning Journal. 2020 Oct;42(5):79-86. doi: 10.1519/SSC.0000000000000539.
  4. Ashtary-Larky D, Bagheri R, Abbasnezhad A, Tinsley GM, Alipour M, Wong A. Effects of gradual weight loss v. rapid weight loss on body composition and RMR: a systematic review and meta-analysis. Br J Nutr. 2020 Dec 14;124(11):1121-1132. doi: 10.1017/S000711452000224X. Epub 2020 Jun 24. PMID: 32576318.
  5. Ashwell M, Gibson S. Comments on the article ‘Optimum waist circumference-height indices for evaluating adult adiposity: An analytic review’: Consideration of relationship to cardiovascular risk factors and to the public health message. Obes Rev. 2020 Sep;21(9):e13074. doi: 10.1111/obr.13074. Epub 2020 Jun 23. PMID: 32578318.
  6. Bailly M, Boscaro A, Pereira B, Courteix D, Germain N, Galusca B, Boirie Y, Thivel D, Verney J. Underweight but not underfat: is fat-free mass a key factor in constitutionally thin women? Eur J Clin Nutr. 2021 Mar 26. doi: 10.1038/s41430-021-00895-5. Epub ahead of print. PMID: 33772214.
  7. Bailly M, Germain N, Galusca B, Courteix D, Thivel D, Verney J. Definition and diagnosis of constitutional thinness: a systematic review. Br J Nutr. 2020 Sep 28;124(6):531-547. doi: 10.1017/S0007114520001440. Epub 2020 Apr 23. PMID: 32321597.
  8. Bosy-Westphal A, Müller MJ. Diagnosis of obesity based on body composition-associated health risks-Time for a change in paradigm. Obes Rev. 2021 Mar;22 Suppl 2:e13190. doi: 10.1111/obr.13190. Epub 2021 Jan 21. PMID: 33480098.
  9. Dulloo AG, Miles-Chan JL, Schutz Y. Collateral fattening in body composition autoregulation: its determinants and significance for
    obesity predisposition. Eur J Clin Nutr. 2018;72(5):657‐664. doi:10.1038/s41430-018-0138-6
  10. Fekri N, Khaloo P, Ramezankhani A, Mansournia MA, Azizi F, Hadaegh F. Association of body mass index with life expectancy with and without cardiovascular disease. Int J Obes (Lond). 2020 Jan;44(1):195-203. doi: 10.1038/s41366-019-0464-3. Epub 2019 Oct 7. PMID: 31591485.
  11. Gowri S M, Antonisamy B, Geethanjali FS, Thomas N, Jebasingh F, Paul TV, Karpe F, Osmond C, Fall CHD, Vasan SK. Distinct opposing associations of upper and lower body fat depots with metabolic and cardiovascular disease risk markers. Int J Obes (Lond). 2021 Jul 30. doi: 10.1038/s41366-021-00923-1. Epub ahead of print. PMID: 34331002.
  12. Haase CL, Lopes S, Olsen AH, Satylganova A, Schnecke V, McEwan P. Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: evidence from a UK primary care database. Int J Obes (Lond). 2021 Jun;45(6):1249-1258. doi: 10.1038/s41366-021-00788-4. Epub 2021 Mar 3. PMID: 33658682; PMCID: PMC8159734.
  13. Haczeyni F, Bell-Anderson KS, Farrell GC. Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev. 2018 Mar;19(3):406-420. doi: 10.1111/obr.12646. Epub 2017 Dec 15. PMID: 29243339.
  14. Honecker J, Weidlich D, Heisz S, Lindgren CM, Karampinos DC, Claussnitzer M, Hauner H. A distribution-centered approach for analyzing human adipocyte size estimates and their association with obesity-related traits and mitochondrial function. Int J Obes (Lond). 2021 Jun 25. doi: 10.1038/s41366-021-00883-6. Epub ahead of print. PMID: 34172828.
  15. Iraki J, Fitschen P, Espinar S, Helms E. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review. Sports (Basel). 2019;7(7):154. Published 2019 Jun 26. doi:10.3390/sports7070154
  16. Javed A, Jumean M, Murad MH, Okorodudu D, Kumar S, Somers VK, Sochor O, Lopez-Jimenez F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis. Pediatr Obes. 2015 Jun;10(3):234-44. doi: 10.1111/ijpo.242. Epub 2014 Jun 25. PMID: 24961794.
  17. Javed AA, Aljied R, Allison DJ, Anderson LN, Ma J, Raina P. Body mass index and all-cause mortality in older adults: A scoping review of observational studies. Obes Rev. 2020 Aug;21(8):e13035. doi: 10.1111/obr.13035. Epub 2020 Apr 21. PMID: 32319198.
  18. Jayawardena R, Ranasinghe P, Ranathunga T, Mathangasinghe Y, Wasalathanththri S, Hills AP. Novel anthropometric parameters to define obesity and obesity-related disease in adults: a systematic review. Nutr Rev. 2020 Jun 1;78(6):498-513. doi: 10.1093/nutrit/nuz078. PMID: 31841153.
  19. Jayedi A, Soltani S, Zargar MS, Khan TA, Shab-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020 Sep 23;370:m3324. doi: 10.1136/bmj.m3324. PMID: 32967840; PMCID: PMC7509947.
  20. Jyväkorpi SK, Urtamo A, Kivimäki M, Salomaa V, Strandberg TE. Association of midlife body composition with old-age health-related quality of life, mortality, and reaching 90 years of age: a 32-year follow-up of a male cohort. Am J Clin Nutr. 2020 Aug 25:nqaa230. doi: 10.1093/ajcn/nqaa230. Epub ahead of print. PMID: 32844221.
  21. Kelly AS, Kaizer AM, Bosch TA, Rudser KD, Ryder JR, Gross AC, Chow LS, Fox CK, Dengel DR. Reaching the Tipping Point: Identification of Thresholds at which Visceral Adipose Tissue May Steeply Increase in Youth. Obesity (Silver Spring). 2020 Jan;28(1):139-145. doi: 10.1002/oby.22679. Epub 2019 Nov 26. PMID: 31773904; PMCID: PMC6925316.
  22. Komaroff M. For Researchers on Obesity: Historical Review of Extra Body Weight Definitions. J Obes. 2016;2016:2460285. doi: 10.1155/2016/2460285. Epub 2016 May 30. PMID: 27313875; PMCID: PMC4904092.
  23. Kuczmarski RJ, Flegal KM. Criteria for definition of overweight in transition: background and recommendations for the United States.
    Am J Clin Nutr. 2000 Nov;72(5):1074-81. doi: 10.1093/ajcn/72.5.1074. PMID: 11063431.
  24. Luong Q, Huang J, Lee KY. Deciphering White Adipose Tissue Heterogeneity. Biology (Basel). 2019 Apr 11;8(2):23. doi: 10.3390/biology8020023. PMID: 30978929; PMCID: PMC6628053.
  25. MacLean PS, Blundell JE, Mennella JA, Batterham RL. Biological control of appetite: A daunting complexity. Obesity (Silver Spring). 2017;25 Suppl 1(Suppl 1):S8‐S16. doi:10.1002/oby.21771
  26. Maffetone PB, Laursen PB. Revisiting the Global Overfat Pandemic. Front Public Health. 2020 Feb 25;8:51. doi: 10.3389/fpubh.2020.00051.
    PMID: 32158742; PMCID: PMC7052125.
  27. Magkos F. Metabolically healthy obesity: what’s in a name? Am J Clin Nutr. 2019 Sep 1;110(3):533-539. doi: 10.1093/ajcn/nqz133. PMID:
  28. Müller MJ, Bosy-Westphal A. Adaptive thermogenesis with weight loss in humans. Obesity (Silver Spring). 2013;21(2):218‐228. doi:10.1002/oby.20027
  29. Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243‐259. doi:10.1093/nutrit/nuy001
  30. Opio J, Croker E, Odongo GS, Attia J, Wynne K, McEvoy M. Metabolically healthy overweight/obesity are associated with increased risk of
    cardiovascular disease in adults, even in the absence of metabolic risk factors: A systematic review and meta-analysis of prospective cohort studies. Obes Rev. 2020 Sep 1. doi: 10.1111/obr.13127. Epub ahead of print. PMID:32869512.
  31. Orsso CE, Silva MIB, Gonzalez MC, Rubin DA, Heymsfield SB, Prado CM, Haqq AM. Assessment of body composition in pediatric overweight and obesity: A systematic review of the reliability and validity of common techniques. Obes Rev. 2020 Aug;21(8):e13041. doi: 10.1111/obr.13041. Epub 2020 May 6. PMID: 32374499.
  32. Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin BA, Zambon A, Barter P, Fruchart JC, Eckel RH, Matsuzawa Y, Després JP. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020 Mar;16(3):177-189. doi: 10.1038/s41574-019-0310-7. Epub 2020 Feb 4. PMID: 32020062; PMCID: PMC7027970.
  33. Sedlmeier AM, Baumeister SE, Weber A, Fischer B, Thorand B, Ittermann T, Dörr M, Felix SB, Völzke H, Peters A, Leitzmann MF. Relation of body fat mass and fat-free mass to total mortality: results from 7 prospective cohort studies. Am J Clin Nutr. 2021 Mar 11;113(3):639-646. doi: 10.1093/ajcn/nqaa339. PMID: 33437985.
  34. Slater GJ, Dieter BP, Marsh DJ, Helms ER, Shaw G, Iraki J. Is an Energy Surplus Required to Maximize Skeletal Muscle Hypertrophy Associated With Resistance Training. Front Nutr. 2019;6:131. Published 2019 Aug 20. doi:10.3389/fnut.2019.00131
  35. Taber CB, Vigotsky A, Nuckols G, Haun CT. Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength. Sports Med. 2019 Jul;49(7):993-997. doi: 10.1007/s40279-019-01107-8. PMID: 31016546.
  36. Tinsley GM. Five-component model validation of reference, laboratory and field methods of body composition assessment. Br J Nutr. 2020 Sep 14:1-14. doi: 10.1017/S0007114520003578. Epub ahead of print. PMID: 32921319.
  37. Tsatsoulis A, Paschou SA. Metabolically Healthy Obesity: Criteria, Epidemiology, Controversies, and Consequences. Curr Obes Rep. 2020 Jun;9(2):109-120. doi: 10.1007/s13679-020-00375-0. PMID: 32301039.
  38. Turicchi J, O’Driscoll R, Finlayson G, Beaulieu K, Deighton K, Stubbs RJ. Associations between the rate, amount, and composition of weight loss as predictors of spontaneous weight regain in adults achieving clinically significant weight loss: A systematic review and meta-regression. Obes Rev. 2019 Jul;20(7):935-946. doi: 10.1111/obr.12849. Epub 2019 Mar 29. PMID: 30925026.
  39. Xiao P, Cheng H, Yan Y, Liu J, Zhao X, Li H, Mi J. High BMI with Adequate Lean Mass Is Not Associated with Cardiometabolic Risk Factors in Children and Adolescents. J Nutr. 2021 May 11;151(5):1213-1221. doi: 10.1093/jn/nxaa328. PMID: 33245131.
Scroll to Top